

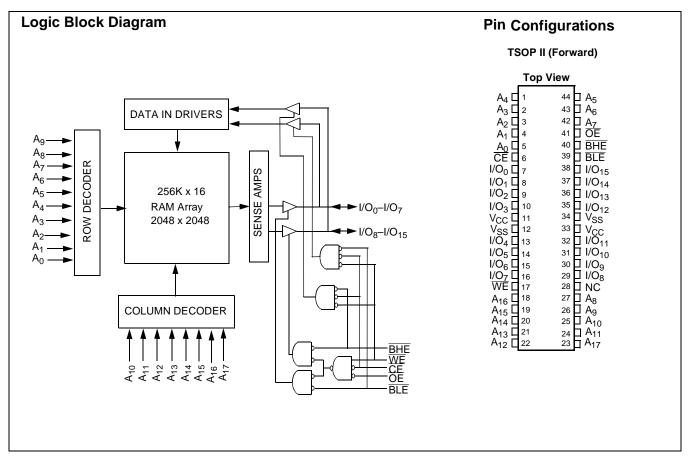
# CY62146V MoBL™

#### **Features**

- Low voltage range: — CY62146V: 2.7V–3.6V
- Ultra-low active, standby power
- Easy memory expansion with  $\overline{CE}$  and  $\overline{OE}$  features
- TTL-compatible inputs and outputs
- Automatic power-down when deselected
- CMOS for optimum speed/power

#### **Functional Description**

The CY62146V is a high-performance CMOS static RAM organized as 262,144 words by 16 bits. These devices feature advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life<sup>TM</sup> (MoBL<sup>TM</sup>) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption by 99% when addresses are not toggling. The device can also be put into standby mode when deselected ( $\overline{CE}$  HIGH). The input/output pins (I/O<sub>0</sub> through

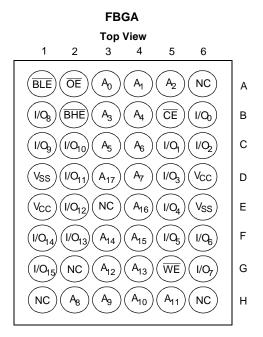

# 256K x 16 Static RAM

 $I/O_{15}$ ) are placed in a high-impedance state when: deselected (CE HIGH), outputs are disabled (OE HIGH), BHE and BLE are disabled (BHE, BLE HIGH), or during a write operation (CE LOW, and WE LOW).

Writing to the device is accomplished by taking Chip Enable  $(\overline{CE})$  and Write Enable  $(\overline{WE})$  inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O<sub>0</sub> through I/O<sub>7</sub>), is written into the location specified on the address pins (A<sub>0</sub> through A<sub>16</sub>). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O<sub>8</sub> through I/O<sub>15</sub>) is written into the location specified on the address pins (A<sub>0</sub> through A<sub>17</sub>).

Reading from the device is accomplished by taking Chip Enable ( $\overline{\text{CE}}$ ) and Output Enable ( $\overline{\text{OE}}$ ) LOW while forcing the Write Enable ( $\overline{\text{WE}}$ ) HIGH. If Byte Low Enable ( $\overline{\text{BLE}}$ ) is LOW, then data from the memory location specified by the address pins will appear on I/O<sub>0</sub> to I/O<sub>7</sub>. If Byte High Enable ( $\overline{\text{BHE}}$ ) is LOW, then data from memory will appear on I/O<sub>8</sub> to I/O<sub>15</sub>. See the truth table at the back of this data sheet for a complete description of read and write modes.

The CY62146V is available in 48-Ball FBGA and standard 44-Pin TSOP Type II (forward pinout) packaging.




MoBL and More Battery Life are trademarks of Cypress Semiconductor Corporation.





## Pin Configurations (continued)



### **Maximum Ratings**

| (Above which the useful life may be impaired. For user guide-lines, not tested.)                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Storage Temperature65°C to +150°C                                                                                                                          |
| Ambient Temperature with<br>Power Applied55°C to +125°C                                                                                                    |
| Supply Voltage to Ground Potential0.5V to +4.6V                                                                                                            |
| DC Voltage Applied to Outputs in High Z State <sup>[1]</sup> 0.5V to V <sub>CC</sub> + 0.5V DC Input Voltage <sup>[1]</sup> 0.5V to V <sub>CC</sub> + 0.5V |

| Output Current into Outputs (LOW)                          | 20 mA   |
|------------------------------------------------------------|---------|
| Static Discharge Voltage<br>(per MIL-STD-883, Method 3015) | >2001V  |
| Latch-Up Current                                           | >200 mA |

## **Operating Range**

| Device   | Range      | Ambient<br>Temperature | v <sub>cc</sub> |
|----------|------------|------------------------|-----------------|
| CY62146V | Industrial | –40°C to +85°C         | 2.7V to 3.6V    |

# **Product Portfolio**

|          |                       |                                            |                       |                              |                            | Power Dis                   | sipation (In               | dustrial) |
|----------|-----------------------|--------------------------------------------|-----------------------|------------------------------|----------------------------|-----------------------------|----------------------------|-----------|
|          | V <sub>CC</sub> Range |                                            |                       | Operating (I <sub>CC</sub> ) |                            | Standby (I <sub>SB2</sub> ) |                            |           |
| Product  | V <sub>CC(min.)</sub> | <b>V<sub>CC(typ.)</sub></b> <sup>[2]</sup> | V <sub>CC(max.)</sub> | Power                        | <b>Typ.</b> <sup>[2]</sup> | Maximum                     | <b>Typ.</b> <sup>[2]</sup> | Maximum   |
| CY62146V | 2.7V                  | 3.0V                                       | 3.6V                  | LL                           | 7 mA                       | 15 mA                       | 2 μΑ                       | 20 µA     |

Notes:

1.  $V_{IL(min.)} = -2.0V$  for pulse durations less than 20 ns. 2. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at  $V_{CC} = V_{CC(typ.)}$ ,  $T_A = 25^{\circ}C$ .



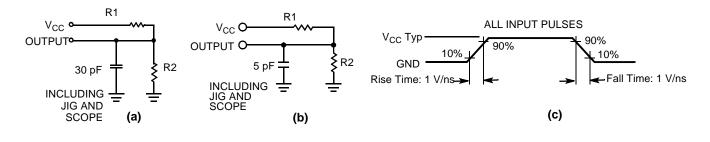
## Electrical Characteristics Over the Operating Range

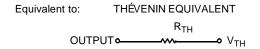
|                  |                                                    |                                                                                                                                                                              |                                            |      | CY62146\   | 1               |      |  |
|------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------|------------|-----------------|------|--|
| Parameter        | Description                                        | Test Cond                                                                                                                                                                    | Test Conditions                            |      |            | Max.            | Unit |  |
| V <sub>OH</sub>  | Output HIGH Voltage                                | I <sub>OH</sub> = -1.0 mA                                                                                                                                                    | $V_{CC} = 2.7V$                            | 2.4  |            |                 | V    |  |
| V <sub>OL</sub>  | Output LOW Voltage                                 | I <sub>OL</sub> = 2.1 mA                                                                                                                                                     | $V_{CC} = 2.7V$                            |      |            | 0.4             | V    |  |
| V <sub>IH</sub>  | Input HIGH Voltage                                 |                                                                                                                                                                              | $V_{CC} = 3.6V$                            | 2.2  |            | $V_{CC}$ + 0.5V | V    |  |
| V <sub>IL</sub>  | Input LOW Voltage                                  |                                                                                                                                                                              | $V_{CC} = 2.7V$                            | -0.5 |            | 0.8             | V    |  |
| I <sub>IX</sub>  | Input Load Current                                 | $GND \le V_I \le V_{CC}$                                                                                                                                                     |                                            | -1   | <u>+</u> 1 | +1              | μA   |  |
| I <sub>OZ</sub>  | Output Leakage Current                             | $GND \le V_0 \le V_{CC}, Ol$                                                                                                                                                 | $GND \le V_O \le V_{CC}$ , Output Disabled |      |            | +1              | μA   |  |
| I <sub>CC</sub>  | V <sub>CC</sub> Operating Supply<br>Current        | $I_{OUT} = 0 \text{ mA},$<br>f = f <sub>MAX</sub> = 1/t <sub>RC</sub> ,<br>CMOS Levels                                                                                       | V <sub>CC</sub> = 3.6V                     |      | 7          | 15              | mA   |  |
|                  |                                                    | I <sub>OUT</sub> = 0 mA, f = 1 M<br>CMOS Levels                                                                                                                              | Hz,                                        |      | 1          | 2               | mA   |  |
| I <sub>SB1</sub> | Automatic CE<br>Power-Down Current—<br>CMOS Inputs | $\label{eq:constraint} \begin{array}{ c c } \hline \overline{CE} \geq V_{CC} - 0.3V, \\ V_{IN} \geq V_{CC} - 0.3V \text{ or} \\ V_{IN} \leq 0.3V, \ f = f_{MAX} \end{array}$ |                                            |      | 2          | 20              | ۵    |  |
| I <sub>SB2</sub> | Automatic CE<br>Power-Down Current—<br>CMOS Inputs | $\label{eq:constraint} \begin{array}{ c c } \hline \overline{CE} \geq V_{CC} - 0.3V \\ V_{IN} \geq V_{CC} - 0.3V \\ \text{or } V_{IN} \leq 0.3V, \ \text{f} = 0 \end{array}$ | V <sub>CC</sub> = LL<br>3.6V               |      | 2          | 20              | μA   |  |

## Capacitance<sup>[3]</sup>

| Parameter        | Description        | Test Conditions                         | Max. | Unit |
|------------------|--------------------|-----------------------------------------|------|------|
| C <sub>IN</sub>  | Input Capacitance  | $T_A = 25^{\circ}C, f = 1 \text{ MHz},$ | 6    | pF   |
| C <sub>OUT</sub> | Output Capacitance | $V_{CC} = V_{CC(typ.)}$                 | 8    | pF   |

#### **Thermal Resistance**


| Description                                                | Test Conditions                                                           | Symbol          | BGA | TSOPII | Unit |
|------------------------------------------------------------|---------------------------------------------------------------------------|-----------------|-----|--------|------|
| Thermal Resistance<br>(Junction to Ambient) <sup>[3]</sup> | Still Air, soldered on a 4.25 x 1.125 inch, 4-layer printed circuit board | $\Theta_{JA}$   | 55  | 60     | °C/W |
| Thermal Resistance<br>(Junction to Case) <sup>[3]</sup>    |                                                                           | Θ <sub>JC</sub> | 16  | 22     | °C/W |

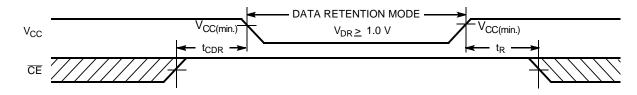

Note:

3. Tested initially and after any design or process changes that may affect these parameters.



#### **AC Test Loads and Waveforms**






| Parameter       | 3.0V | Unit |
|-----------------|------|------|
| R1              | 1105 | Ω    |
| R2              | 1550 | Ω    |
| R <sub>TH</sub> | 645  | Ω    |
| V <sub>TH</sub> | 1.75 | V    |

#### Data Retention Characteristics (Over the Operating Range)

| Parameter                       | Description                               | Conditions                                                                                                                                                                                                               |    | Min. | <b>Typ.</b> <sup>[2]</sup> | Max. | Unit |
|---------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------|----------------------------|------|------|
| V <sub>DR</sub>                 | V <sub>CC</sub> for Data Retention)       |                                                                                                                                                                                                                          |    | 1.0  |                            | 3.6  | V    |
| I <sub>CCDR</sub>               | Data Retention Current                    | $\label{eq:constraint} \begin{array}{l} \frac{V_{CC}}{CE} = 1.0V\\ \overline{CE} \geq V_{CC} - 0.3V,\\ V_{IN} \geq V_{CC} - 0.3V \text{ or}\\ V_{IN} \leq 0.3V\\ \text{No input may exceed}\\ V_{CC} + 0.3V \end{array}$ | LL |      | 1                          | 10   | μA   |
| t <sub>CDR</sub> <sup>[3]</sup> | Chip Deselect to Data Re-<br>tention Time |                                                                                                                                                                                                                          |    | 0    |                            |      | ns   |
| t <sub>R</sub> <sup>[4]</sup>   | Operation Recovery Time                   |                                                                                                                                                                                                                          |    | 70   |                            |      | ns   |

#### **Data Retention Waveform**



#### Note:

4. Full Device AC operation requires linear V<sub>CC</sub> ramp from V<sub>DR</sub> to V<sub>CC(min.)</sub>  $\geq$  10 µs or stable V<sub>CC(min.)</sub>  $\geq$ 10 µs.



### Switching Characteristics Over the Operating Range<sup>[5]</sup>

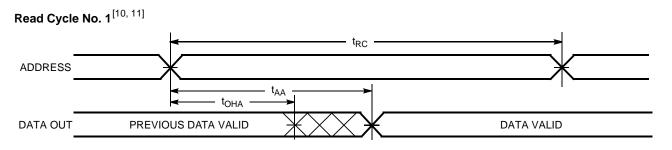
|                               |                                     | 70   | ns   |      |  |
|-------------------------------|-------------------------------------|------|------|------|--|
| Parameter                     | Description                         | Min. | Max. | Unit |  |
| READ CYCLE                    | · ·                                 |      |      | •    |  |
| t <sub>RC</sub>               | Read Cycle Time                     | 70   |      | ns   |  |
| t <sub>AA</sub>               | Address to Data Valid               |      | 70   | ns   |  |
| t <sub>OHA</sub>              | Data Hold from Address Change       | 10   |      | ns   |  |
| t <sub>ACE</sub>              | CE LOW to Data Valid                |      | 70   | ns   |  |
| t <sub>DOE</sub>              | OE LOW to Data Valid                |      | 25   | ns   |  |
| t <sub>LZOE</sub>             | OE LOW to Low Z <sup>[6, 7]</sup>   | 5    |      | ns   |  |
| t <sub>HZOE</sub>             | OE HIGH to High Z <sup>[7]</sup>    |      | 20   | ns   |  |
| t <sub>LZCE</sub>             | CE LOW to Low Z <sup>[6]</sup>      | 10   |      | ns   |  |
| t <sub>HZCE</sub>             | CE HIGH to High Z <sup>[6, 7]</sup> |      | 20   | ns   |  |
| t <sub>PU</sub>               | CE LOW to Power-Up                  | 0    |      | ns   |  |
| t <sub>PD</sub>               | CE HIGH to Power-Down               | 70   |      | ns   |  |
| t <sub>DBE</sub>              | BHE / BLE LOW to Data Valid         |      | 35   | ns   |  |
| t <sub>LZBE</sub>             | BHE / BLE LOW to Low Z              | 5    |      | ns   |  |
| t <sub>HZBE</sub>             | BHE / BLE HIGH to High Z            |      | 20   | ns   |  |
| WRITE CYCLE <sup>[8, 9]</sup> |                                     |      |      |      |  |
| t <sub>WC</sub>               | Write Cycle Time                    | 70   |      | ns   |  |
| t <sub>SCE</sub>              | CE LOW to Write End                 | 60   |      | ns   |  |
| t <sub>AW</sub>               | Address Set-Up to Write End         | 60   |      | ns   |  |
| t <sub>HA</sub>               | Address Hold from Write End         | 0    |      | ns   |  |
| t <sub>SA</sub>               | Address Set-Up to Write Start       | 0    |      | ns   |  |
| t <sub>PWE</sub>              | WE Pulse Width                      | 40   |      | ns   |  |
| t <sub>BW</sub>               | BHE / BLE Pulse Width               | 60   |      | ns   |  |
| t <sub>SD</sub>               | Data Set-Up to Write End            | 30   |      | ns   |  |
| t <sub>HD</sub>               | Data Hold from Write End            | 0    |      | ns   |  |
| t <sub>HZWE</sub>             | WE LOW to High Z <sup>[6, 7]</sup>  |      | 25   | ns   |  |
| t <sub>LZWE</sub>             | WE HIGH to Low Z <sup>[6]</sup>     | 10   |      | ns   |  |

Notes:

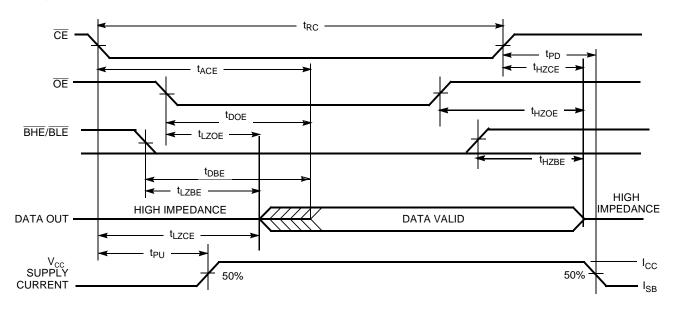
Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to V<sub>CC(typ.)</sub>, and output loading of the specified I<sub>OL</sub>/I<sub>OH</sub> and 30 pF load capacitance.

6.

7.


At any given temperature and voltage condition,  $t_{HZCE}$  is less than  $t_{LZCE}$ ,  $t_{HZOE}$  is less than  $t_{LZOE}$ , and  $t_{HZWE}$  is less than  $t_{LZWE}$  for any given device.  $t_{HZOE}$ ,  $t_{HZCE}$ , and  $t_{HZWE}$  are specified with  $C_L = 5 \text{ pF}$  as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage. The internal write time of the memory is defined by the overlap of  $\overline{CE}$  LOW and  $\overline{WE}$  LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write. The minimum write cycle time for Write Cycle #3 (WE controlled,  $\overline{OE}$  LOW) is the sum of  $t_{HZWE}$  and  $t_{SD}$ . 8.

9.




CY62146V MoBL<sup>™</sup>

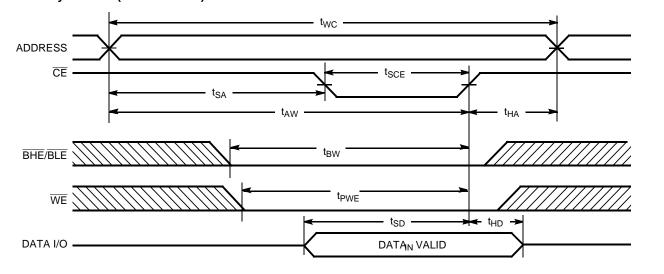
## **Switching Waveforms**



## Read Cycle No. 2 [11, 12]



#### Notes:

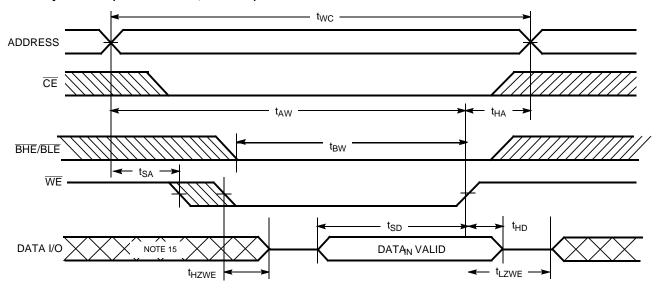

- 10. Device is continuously selected.  $\overline{OE}$ ,  $\overline{CE} = V_{IL}$ .
- WE is HIGH for read cycle.
   Address valid prior to or coincident with CE transition LOW.



## Switching Waveforms (continued)

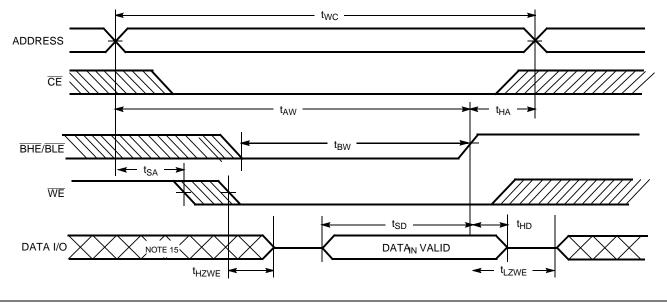


# Write Cycle No. 2 (CE Controlled)<sup>[8, 13, 14]</sup>



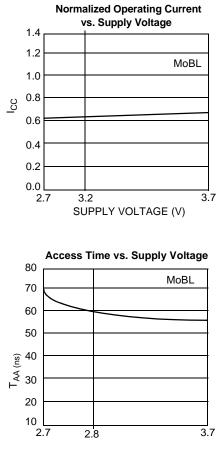

#### Notes:

- Data I/O is high-impedance if OE = V<sub>IH</sub>.
   If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.
   During this period, the I/Os are in output state and input signals should not be applied.




## Switching Waveforms (continued)




# Write Cycle No. 3 ( $\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW)<sup>[9, 14]</sup>

Write Cycle No. 4 ( $\overline{BHE}/\overline{BLE}$  Controlled,  $\overline{OE}$  LOW)<sup>[15]</sup>





# **Typical DC and AC Characteristics**



SUPPLY VOLTAGE (V)

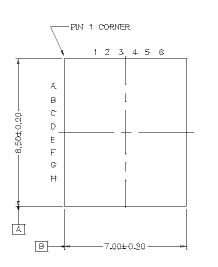
### **Truth Table**

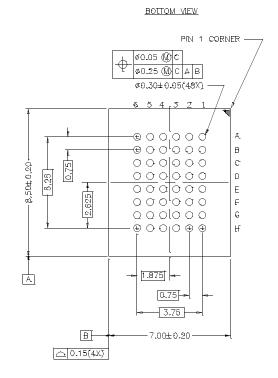
| CE | WE | OE | BHE | BLE | Inputs/Outputs                                                                                   | Mode                                                                                                 | Power                      |
|----|----|----|-----|-----|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------|
| Н  | Х  | Х  | Х   | Х   | High Z                                                                                           | Deselect/Power-Down                                                                                  | Standby (I <sub>SB</sub> ) |
| L  | Н  | L  | L   | L   | Data Out (I/O <sub>0</sub> -I/O <sub>15</sub> )                                                  | Read                                                                                                 | Active (I <sub>CC</sub> )  |
| L  | н  | L  | Н   | L   | Data Out (I/O <sub>0</sub> –I/O <sub>7</sub> );<br>I/O <sub>8</sub> –I/O <sub>15</sub> in High Z | Read                                                                                                 | Active (I <sub>CC</sub> )  |
| L  | н  | L  | L   | Н   | Data Out (I/O <sub>8</sub> –I/O <sub>15</sub> );<br>I/O <sub>0</sub> –I/O <sub>7</sub> in High Z | Read                                                                                                 | Active (I <sub>CC</sub> )  |
| L  | Н  | L  | Н   | Н   | High Z                                                                                           | Output Disabled                                                                                      | Active (I <sub>CC</sub> )  |
| L  | Н  | Н  | Х   | Х   | High Z                                                                                           | Output Disabled                                                                                      | Active (I <sub>CC</sub> )  |
| L  | L  | Х  | L   | L   | Data In (I/O <sub>0</sub> -I/O <sub>15</sub> )                                                   | Write                                                                                                | Active (I <sub>CC</sub> )  |
| L  | L  | Х  | Н   | L   | Data In (I/O <sub>0</sub> –I/O <sub>7</sub> );<br>I/O <sub>8</sub> –I/O <sub>15</sub> in High Z  | Write                                                                                                | Active (I <sub>CC</sub> )  |
| L  | L  | Х  | L   | Н   | Data In (I/O <sub>8</sub> –I/O <sub>15</sub> );<br>I/O <sub>0</sub> –I/O <sub>7</sub> in High Z  | Data In (I/O <sub>8</sub> –I/O <sub>15</sub> ); Write<br>/O <sub>0</sub> –I/O <sub>7</sub> in High Z |                            |
| L  | L  | Х  | Н   | Н   | High Z                                                                                           | Output Disabled                                                                                      | Active (I <sub>CC</sub> )  |



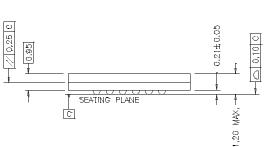


## **Ordering Information**


| Speed<br>(ns) | Ordering Code    | Package<br>Name | Package Type           | Operating<br>Range |
|---------------|------------------|-----------------|------------------------|--------------------|
| 70            | CY62146VLL-70ZI  | Z44             | 44-Pin TSOP II         | Industrial         |
|               | CY62146VLL-70BAI | BA48B           | 48-Ball Fine Pitch BGA |                    |


Document #: 38-00647-\*E

Package Diagrams

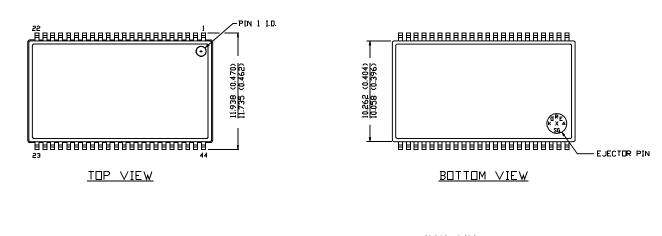

#### 48-Ball (7.00 mm x 8.50 mm x 1.20 mm) Fine Pitch BGA BA48B

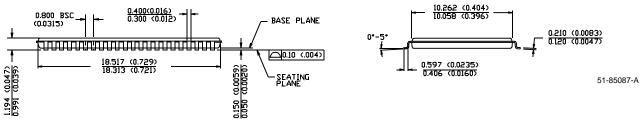
<u>TOP VIEW</u>

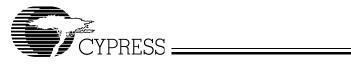




51-85106-B





### Package Diagrams (continued)



DIMENSION IN MM (INCH) MAX MIN.







## **Revision History**

| Document Title: CY62146V MoBL<br>Document Number: 38-00647 |         |            |                    |                                                                                                                                                                |
|------------------------------------------------------------|---------|------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| REV.                                                       | ECN NO. | ISSUE DATE | ORIG. OF<br>CHANGE | DESCRIPTION OF CHANGE                                                                                                                                          |
| **                                                         | 2056    | 12/01/98   | SKX                | 1. New Data Sheet                                                                                                                                              |
| *A                                                         | 2518    | 2/24/99    | SKX                | <ol> <li>Changed the voltage range to 1.8V–3.6V</li> <li>Removed the shading on LL version.</li> </ol>                                                         |
| *В                                                         | 2656    | 8/27/99    | SKX                | <ol> <li>Split part into 62146V &amp; 62146V18; shaded 62146V18 part</li> <li>Speed bin 70 ns only</li> <li>Make final</li> </ol>                              |
| *C                                                         | 2855    | 1/12/00    | CXV                | <ol> <li>Add thermal resistance table</li> <li>Change graphs on last page to include: I<sub>SS</sub>, I<sub>CC</sub>, T<sub>AA</sub> only</li> </ol>           |
| *D                                                         | 3162    | 7/24/00    | CXV                | 1. Separating MoBL/MoBL 2<br>2. Added 85 ns bin<br>3. Added Std. power bin                                                                                     |
| *E                                                         | 3618    | 3/26/01    | BCX                | <ol> <li>Package name change from BA49-BA48B</li> <li>Dimension change from 7x 8.5 x 1.1 to 7 x 8.5 x 1.2</li> <li>Typical DC and AC graphs changed</li> </ol> |